Logo ÉTS
Session
Cours
Responsable(s) Jean-Marc Lina

Se connecter
 

Sauvegarde réussie
Echec de sauvegarde
Avertissement
École de technologie supérieure

Responsable(s) de cours : Jean-Marc Lina


PLAN DE COURS

Été 2022
ELE735 : Analyse numérique (3 crédits)


Modalités de la session d’été 2022


Vous trouverez ci-dessous les modalités de la session d’été 2022. Vous devez les lire attentivement.


Pour assurer la tenue de la session d’été 2022, les modalités suivantes seront appliquées :


  • Les activités d’enseignement de la session d’été 2022 comprendront des activités en présence et à distance, lesquelles seront ajustées en fonction de l’évolution de la situation socio-sanitaire.
  • Pour les cours (ou séances de cours) donnés à distance, l’étudiant doit avoir accès à un ordinateur, un micro, une caméra et un accès à internet, idéalement de 10Mb/s ou plus. L’étudiant doit ouvrir sa caméra et/ou son micro lorsque requis, notamment pour des fins d’identification ou d’évaluation.
  • Les cours (ou séances de cours) donnés à distance pourraient être enregistrés, afin de les rendre disponibles aux étudiants inscrits au cours.
  • La notation des cours sera la notation régulière prévue aux règlements des études de l’ÉTS.
  • Les examens (intra, finaux) se feront en présence, tant que la situation socio-sanitaire le permet.
  • Le contexte actuel oblige bien sûr l’ÉTS à suivre de près l’évolution de la pandémie de COVID-19, laquelle pourrait entraîner, avant ou après le début de la session d’été 2022, un resserrement des directives et recommandations gouvernementales. Nous vous assurons que l’ÉTS se conformera aux règles en vigueur afin de préserver la santé publique et que, si requis, elle pourrait aller jusqu’à interdire l’accès physique au campus universitaire et ordonner que toutes les activités d’enseignement et d’évaluation soient exclusivement données à distance pour tout ou partie de la session d’été 2022. Ainsi, si les examens (intra, finaux) devaient se faire à distance, leur surveillance se fera à l’aide de la caméra et du micro de l’ordinateur et pourrait être enregistrée. Ceci est nécessaire pour se conformer aux exigences du Bureau canadien d’agrément des programmes de génie (BCAPG) afin d’assurer la validité des évaluations.
  • Des exigences additionnelles pourraient être spécifiées par l’ÉTS ou votre département, suivant les particularités propres à votre programme.

En vous inscrivant ou en demeurant inscrit à la session d’été 2022, vous acceptez les modalités particulières de la session d’été 2022.


Nous vous rappelons que vous avez jusqu’au 17 mai 2022 pour vous désinscrire de vos cours et être remboursé.


Pour les nouveaux étudiants inscrits au programme de baccalauréat uniquement, vous avez jusqu’au 31 mai 2022 pour vous désinscrire de vos cours et être remboursé.




Préalables
Programme(s) : 7483, 7883
             
  Profils(s) : Tous profils  
             
    MAT165    
             
Programme(s) : 7694
             
  Profils(s) : Tous profils  
             
    MAT165 ET ELE265    
             
Unités d'agrément
Total d'unités d'agrément : 58,8 100,0 %




Qualités de l'ingénieur

Qn
Qualité visée dans ce cours  
Qn
  Qualité visée dans un autre cours  
  Indicateur enseigné
  Indicateur évalué
  Indicateur enseigné et évalué



Descriptif du cours



Objectifs du cours

Introduire les concepts du calcul et de l’analyse numérique aux étudiant(e)s.
Familiariser les étudiant(e)s avec les algorithmes de base et les rendre capables de les utiliser dans des cas pratiques.
Rendre l’étudiant(e) capable d’analyser la performance, la rapidité, la convergence et la précision des différents algorithmes utilisés.




Stratégies pédagogiques

Un cours magistral d'une durée de 3 heures 30 minutes par semaine. La solution à de nombreux problèmes typiques sera présentée après l’introduction de chaque nouvelle notion afin d’illustrer la théorie et de permettre aux étudiant(e)s de bien assimiler les méthodes présentées.

Le rythme du cours est déterminé sur la base que les étudiants ont fait toutes les lectures préparatoires avant de se présenter aux cours magistraux.

24 heures de travaux pratiques et laboratoires. Le calendrier de ces séances de TP/Labo sera disponible sur le site moodle du cours en début de session.




Utilisation d’appareils électroniques

La calculatrice et/ou ordinateur sont autorisés lors des min-tests qui seront faits à distance. L'ordinateur ne sera pas permis à l'examen final dans le cas où celui-c- sera fait en présentiel.




Horaire
Groupe Jour Heure Activité
01 Mercredi 08:30 - 12:00 Activité de cours
Jeudi 13:30 - 17:30 Laboratoire aux 2 semaines



Coordonnées de l’enseignant
Groupe Nom Activité Courriel Local Disponibilité
01 Jean-Marc Lina Activité de cours Jean-Marc.Lina@etsmtl.ca A-2465
01 Bilal Alchalabi Laboratoire aux 2 semaines cc-Bilal.Alchalabi@etsmtl.ca A-4526



Cours
  1. Introduction  (2 heures)
    • Plan de cours
    • Solution analytique versus solution numérique
    • Représentation numérique des nombres
    • Sources d’erreurs
  2. Rappels mathématiques (4 heures)
    • Polynômes
    • Évaluation numérique d’un polynôme
    • Développement de Taylor
    • Nombres complexes
    • Matrices et algèbre linéaire
    • Orthogonalité
    • Dérivées partielles et gradient
  3. Résolution d’équation(s) non linéaire(s)  (5 heures)
    • Méthode de la bissection
    • Interpolation linéaire
    • Méthodes de Newton
    • Méthode de Muller
    • Méthode du point fixe
    • Système d’équations non linéaires
  4. Résolution d'un système d'équations linéaires (5 heures)
    • Méthodes de Gauss et Gauss-Jordan
    • Factorisation LU
    • Inversion de matrices
    • Méthodes itératives
    • Valeurs propres et vecteurs propres
    • Décomposition en valeurs singulières (SVD)
    • Pseudo-inverse
  5. Analyse de Fourier (4 heures)
    • Séries de Fourier
    • Transformée de Fourier
    • Transformée de Fourier discrète
    • Théorème d'échantillonnage et repliement spectral
    • Fenêtrage
  6. Modélisation et Interpolation (5 heures)
    • Moindres carrés
    • Régression linéaire
    • Modélisation (curve fitting) polynômiale
    • Interpolation polynômiale
    • Splines
    • Algorithme d'apprentissage et modélisation par des fonctions non-linéaires
  7. Intégration et différentiation numérique  (4 heures)
    • Différentiation numérique
    • Intégration numérique
    • Méthode trapézoïdale
    • Méthode de Simpson
    • Méthode de Romberg
    • Intégrale multiple
  8. Résolution d’équations différentielles  (4 heures)
    • Séries de Taylor
    • Méthode d’Euler
    • Méthode de Runge-Kutta
    • Méthode à pas variable
    • Système d’équations d’ordre élevé
    • Système mal conditionné
    • Problèmes avec conditions aux frontières
  9. Introduction aux ondelettes (3 heures)
    • Résolution temporelle et fréquentielle
    • Banque de filtres et ondelettes
    • Applications

Total: 36 heures + quiz (3 heures)

 




Laboratoires et travaux pratiques

Introduction à Matlab (4 heures)

Optimisation (4 heures)

Fourier (3 heures)

Reconnaissance de formes (3 heures)

Travaux pratiques (10 heures)




Utilisation d'outils d'ingénierie

Le logiciel MATLAB est l'outil principal utilisé dans ce cours.

Une connaissance de base de MATLAB est nécessaire à la réussite de ce cours.




Évaluation
Quiz (5) 35%
Examen final 30%
Laboratoires (3) 35%

Travaux à remettre: trois (3) rapports de laboratoire réalisés par groupes de deux (2) étudiants.

La note de passage du cours et les différents seuils (lettres) seront établis par l'enseignant en fin de session, en tenant en compte de plusieurs paramètres. 

De plus, en confirmité avec la clause 7.2.3 du «Règlement des études de 1er cycle», afin de réussir ce cours, l'étudiant(e) doit obtenir minimalement une note de 50% aux éléments d'évaluation individuelle (35/70 aux quiz et examen final.) Ceci est une condition nécessaire, mais non unique, afin de réussir le cours.

 




Date de l'examen final
Votre examen final aura lieu pendant la période des examens finaux, veuillez consulter l'horaire à l'adresse suivante : http://etsmtl.ca/Etudiants-actuels/Baccalaureat/Examens-finaux


Politique de retard des travaux
Tout travail (devoir pratique, rapport de laboratoire, rapport de projet, etc.) remis en retard sans motif valable, c’est-à-dire autre que ceux mentionnés dans le Règlement des études (1er cycle, article 7.2.7 b / cycles supérieurs, article 6.5.4 b) se verra attribuer la note zéro, à moins que d’autres dispositions ne soient communiquées par écrit par l’enseignant dans les consignes de chaque travail à remettre ou dans le plan de cours pour l’ensemble des travaux.

Dispositions additionnelles

La session d'été sera faite en présence, en s'ajustant et en respectant les regles sanitaies en vigueur. Les périodes de laboratoires et de travaux dirigés pourraient être faits à distance.

Les évaluations (Quizz de 20 minutes) seront faites en présence ou à distance, pendant les périodes de cours.

Une pénalité de 5% par journée de retard dans la remise des travaux (laboratoires) sera appliquée.




Absence à un examen
Dans les cinq (5) jours ouvrables suivants, la tenue de son examen, l’étudiant devra justifier son absence d’un examen durant le trimestre auprès de la coordonnatrice – Affaires départementales qui en référera au directeur du département ou du SEG. Pour un examen final, l’étudiant devra justifier son absence auprès du Bureau du registraire. Dans tous les cas, l’étudiant doit effectuer sa demande en complétant le formulaire prévu à cet effet qui se trouve dans son portail Mon ÉTS/Formulaires. Toute absence non justifiée par un motif majeur (maladie certifiée par un billet de médecin, décès d’un parent immédiat, Activité compétitive d’un étudiant appartenant à un club scientifique ou un club sportif d’élite de l’ÉTS ou au programme « Alliance sport étude » ou autre) à un examen entraînera l’attribution de la note zéro (0).



Plagiat et fraude
Les clauses du « Règlement sur les infractions de nature académique de l’ÉTS » s’appliquent dans ce cours ainsi que dans tous les cours du département. Les étudiants doivent consulter le Règlement sur les infractions de nature académique (https://www.etsmtl.ca/docs/ETS/Gouvernance/Secretariat-general/Cadre-reglementaire/Documents/Infractions-nature-academique ) pour identifier les actes considérés comme étant des infractions de nature académique ainsi que prendre connaissance des sanctions prévues à cet effet.  À l’ÉTS, le respect de la propriété intellectuelle est une valeur essentielle et les étudiants sont invités à consulter la page Citer, pas plagier ! (https://www.etsmtl.ca/Etudiants-actuels/Baccalaureat/Citer-pas-plagier).



Documentation obligatoire

GILAT, A., SUBRAMANIAM, V., Numerical Methods for Engineers and Scientists: An Introduction with Applications using Matlab 3rd edition, Wiley, 2013 (ISBN 978-1118554937) 




Ouvrages de références

MATLAB Student Version Release 13, The MathWorks (ISBN 0-9672195-9-0)

BURDEN, R.L., FAIRES, J.D., Numerical Analysis, 5th Ed., PWS Publishing Co., Boston, 1993 (ISBN 0-534-93219-3)

HOFFMAN, J.D., Numerical Methods for Engineers and Scientists, McGraw-Hill, New York, 1992 (ISBN 0-07-029213-2)

PRESS, W.H., FLANNERY, B.P., TEUKOLSKY, S.A., VETTERLING, W.T., Nunerical Recipes the Arts of Scientific Computing, Cambridge University Press, New York, 1986 (ISBN 0-521-30811-9)

KUMAR, V., GRAMA, A., GUPTA, A., KARYPIS, G., Introduction to Parallel Computing Design and Analysis of Algorithms, The Benjamin/Cummins Publishing Co. Inc., U.S.A., 1994 (ISBN 0-8053-3171-0)

KREYSZIG, E., Advanced Engineering Mathematics, 7th Ed., John-Wiley and Sons, New York, 1993.

COURANT, R., HILBERT, D., Methods of Mathematical Physics, John-Wiley and Sons, New York, 1989

CHURCHILL, R.V., Complex Variables and Application, McGraw-Hill, New York, 1990

HABERMAN, R., Elementary Applied Partial Differential Equations, Prentice Hall, Englewood Cliffs, New Jersey, 1987

PINSKY, M.A., Partial Differential Equations and Boundary-Value Problems with Applications, 2nd Ed., McGraw-Hill, New York, 1991.




Adresse internet du site de cours et autres liens utiles

Le site web du cours est sur la plateforme moodle: https://ena.etsmtl.ca/




Autres informations

ELE735    SESSION ETE.2022  COURS/TRAVAUX DIRIGÉS et LABORATOIRES

 

Organisation du cours dans la session en ‘mode hybride’ (classe : D-3007 ou lien zoom), les mercredis, 8:45 – 12:00. On indique par ‘c’ les périodes en classe (D-3007) et par ‘z’ les cours dispensés exclusivement à distance (zoom)

Les Travaux Dirigés sont tous les jeudis, 14 :00 – 16 :00 (A-2446)

Les Quizz seront des exercices de cours à choix multiples possiblement accessibles dans le site moodle du cours. Le programme des quizz est indiqué dans le plan.

Semaine

Cours

TD/Laboratoires

 

 

 

Cours 1c

4 mai

 

 

1. Introduction : numérique vs analytique

2. la représentation numérique des nombres entiers

3. la représentation en point fixe

4. La représentation en point flottant

5. IEEE-754

6. Exemples

 

 

 

 

 

 

Cours 2c

11 mai

 

1. Origine des erreurs numériques 

2. les nombres complexes 

3. Evaluation des polynômes

4. Polynômes de Chebyshev

5. Polynômes de Legendre

 

12 mai : 14:00-16:00

TD.1

 

Cours 3c

18 mai

Quizz 1 (7%)

1. Décomposition des fonctions

2. Développement de Taylor

3. Développement de Chebyshev

4. Développement de Fourier

5. Quizz 1 (matériel : cours 1 et 2, TD1)

 

19 mai

-TD.2 (13:30 - 15:30)

-Introduction à Matlab 

(16:00 – 17:00)

 

 

 

Cours 4z

1 juin

1. Matrices et vecteurs I

2. Matrices particulières

3. Orthogonalité

4. La FFT

5. Dérivées

6. Gradients

 

2 juin : 14:00 – 16:00

Labo1 (12 %)

Optimisation du système ‘émetteurs et antenne’ 

 

 

 

Cours 5z

8 juin

Quizz 2 (7%)

Equations non-linéaires I

1. Introduction

2. Méthode du point fixe

3. Méthode de la bissection

4. La correction d’Aitken

5. Regula Falsi

6. Quizz 2 (matériel : cours 3 et 4, TD2)

 

9 juin : 14:00 – 16:00

TD.3

 

 

 

Cours 6c

15 juin

 

 

Equations non-linéaires II

1. Systeme d’équations non linéaires

2. Méthode de Newton-Raphson

3. Méthode de Newton Généralisée

4. Newton-Raphson en 2d

5. Exemples

 

16 juin : 14:00 - 16:00

TD.4

 

 

 

 

 

Cours 7c

22 juin

Quizz 3 (7%)

 

Matrices et vecteurs II

1. Inversion d’une matrice

2. Vecteurs et valeurs propres

3. Décomposition en valeurs singulières

4. SVD

5. Quizz 3 (matériel : cours 5 et 6, TD3)

 

23 juin : 14:00 - 16:00

Labo 2 (12%)

Compression audio

 

 

 

Cours 8z

29 juin

 

 

1. Système d’équations linéaires

2. Pseudo-inverse

3. Conditionnement d’une matrice 

4. Factorisation LU

5. Méthodes de Jacobi 

6. Méthode de Gauss-Jordan

 

 

 

Cours 9z

6 juil.

Quizz 4 (7%)

 

1. Interpolation polynômiale

2. Interpolation de Newton

3. Interpolation de Lagrange

4. Splines

5. Quizz 4 (matériel : cours 7 et 8, TD.4)

 

7 juil. : 14:00 - 16:00

TD.5

 

 

Cours 13c

13 juil.

 

1. Approximations quadratique

2. Régression linéaire

3. Approximations non-linéaires

4. Réseaux de neurones

5. Algorithme de rétropropagation

 

14 juil. : 14:00 – 16 :00

TD.6 

 

 

Cours 11c

20 juil.

Quizz 5 (7%)

 

1. Intégration numérique

2. Différentiation numérique

3. Méthode des trapèzes

4. Méthode de Simpson

5. Méthode de Romberg

6. Quizz 5 (matériel cours 9 et 10, TD.5)

 

21 juil. : 14:00 - 16:00

Labo 3 (11%)

PCA et reconnaissance de visage

 

 

Cours 12z

27 juil.

 

 

1. Dérivée numerique et Equation Différentielle I

2. Méthode d’Euler

3. Méthode de Runge-Kutta

4. Méthode de Runge-Kutta ODE45

5. Exemple

 

28 juil. : 14:00 – 16:00

TD.7

 

 

Cours 13c

4 aout

1. Introduction aux analyses temps-fréquence

2. Transformée de Hilbert

3. Analyse de Gabor

4. Analyse de Morlet

5. Ondelettes

6. Conclusion

 

5 aout : 14:00 – 16:00

Révisions