Logo ÉTS
Session
Cours
Responsable(s) Rachid Aissaoui

Se connecter
 

Sauvegarde réussie
Echec de sauvegarde
Avertissement
École de technologie supérieure

Responsable(s) de cours : Rachid Aissaoui


PLAN DE COURS

Été 2022
GPA535 : Systèmes asservis (4 crédits)


Modalités de la session d’été 2022


Vous trouverez ci-dessous les modalités de la session d’été 2022. Vous devez les lire attentivement.


Pour assurer la tenue de la session d’été 2022, les modalités suivantes seront appliquées :


  • Les activités d’enseignement de la session d’été 2022 comprendront des activités en présence et à distance, lesquelles seront ajustées en fonction de l’évolution de la situation socio-sanitaire.
  • Pour les cours (ou séances de cours) donnés à distance, l’étudiant doit avoir accès à un ordinateur, un micro, une caméra et un accès à internet, idéalement de 10Mb/s ou plus. L’étudiant doit ouvrir sa caméra et/ou son micro lorsque requis, notamment pour des fins d’identification ou d’évaluation.
  • Les cours (ou séances de cours) donnés à distance pourraient être enregistrés, afin de les rendre disponibles aux étudiants inscrits au cours.
  • La notation des cours sera la notation régulière prévue aux règlements des études de l’ÉTS.
  • Les examens (intra, finaux) se feront en présence, tant que la situation socio-sanitaire le permet.
  • Le contexte actuel oblige bien sûr l’ÉTS à suivre de près l’évolution de la pandémie de COVID-19, laquelle pourrait entraîner, avant ou après le début de la session d’été 2022, un resserrement des directives et recommandations gouvernementales. Nous vous assurons que l’ÉTS se conformera aux règles en vigueur afin de préserver la santé publique et que, si requis, elle pourrait aller jusqu’à interdire l’accès physique au campus universitaire et ordonner que toutes les activités d’enseignement et d’évaluation soient exclusivement données à distance pour tout ou partie de la session d’été 2022. Ainsi, si les examens (intra, finaux) devaient se faire à distance, leur surveillance se fera à l’aide de la caméra et du micro de l’ordinateur et pourrait être enregistrée. Ceci est nécessaire pour se conformer aux exigences du Bureau canadien d’agrément des programmes de génie (BCAPG) afin d’assurer la validité des évaluations.
  • Des exigences additionnelles pourraient être spécifiées par l’ÉTS ou votre département, suivant les particularités propres à votre programme.

En vous inscrivant ou en demeurant inscrit à la session d’été 2022, vous acceptez les modalités particulières de la session d’été 2022.


Nous vous rappelons que vous avez jusqu’au 17 mai 2022 pour vous désinscrire de vos cours et être remboursé.


Pour les nouveaux étudiants inscrits au programme de baccalauréat uniquement, vous avez jusqu’au 31 mai 2022 pour vous désinscrire de vos cours et être remboursé.




Préalables
Programme(s) : 7485,7885
             
  Profils(s) : Tous profils  
             
    MAT472 ET MAT265    
             
Unités d'agrément
Total d'unités d'agrément : 64,8 50,0 % 50,0 %




Qualités de l'ingénieur

Qn
Qualité visée dans ce cours  
Qn
  Qualité visée dans un autre cours  
  Indicateur enseigné
  Indicateur évalué
  Indicateur enseigné et évalué



Descriptif du cours

Acquérir les connaissances de base sur la modélisation, l'analyse et la conception de systèmes de commande automatique.

Historique du processus d'automatisation industrielle. Composantes d'un système de commande à rétroaction. Systèmes en boucle ouverte ou fermée. Modélisation et mise en équations des systèmes de contrôle. Systèmes de commande de position et de vitesse. Schémas fonctionnels. Linéarisation de systèmes non linéaires. Transformée de Laplace. Fonctions de transfert. Systèmes du premier et du deuxième ordre. Analyse dans le domaine temporel. Analyse dans le domaine fréquentiel (diagrammes de Bode et de Nyquist). Évaluation expérimentale de la fonction de transfert d'un système. Stabilité avec la position des pôles et avec les critères de Routh-Hurwitz et de Nyquist. Critères de design. Conception dans le domaine fréquentiel avec différents correcteurs (P, PI, PID, correcteurs par avance et retard de phase). Applications aux servomécanismes électriques, mécaniques, pneumatiques et hydrauliques.

Séances de laboratoire et exemples pratiques de systèmes de commande.




Objectifs du cours
  • Concevoir des contrôleurs (P, PI, PD ou PID) et des compensateurs nécessaires à maintenir la stabilité des systèmes avec une marge de stabilité acceptable, tout en réalisant des critères de performance.
  • Utilisation de Matlab et Simulink pour résoudre des problèmes et simuler des systèmes de commande.



Stratégies pédagogiques

39           heures de cours (3 heures par semaine)

36           heures de laboratoires (3 heures par semaine)

  6           heures de travail personnel par semaine

 

  • Cours magistral : de nombreuses applications seront étudiées en classe pour permettre aux étudiants de bien assimiler la théorie et les techniques présentées au cours.
  • Laboratoires/travaux dirigés : applications de la théorie étudiée au moyen de simulations sur ordinateur avec Matlab et Simulink en se basant sur les paramètres du matériel QUBE-Servo 2.



Utilisation d’appareils électroniques

- Utilisation intensif du logiciel  Matlab et de l'outil de simulation Simulink.

- Utilisation de la calculatrice symbolique TI-nspire.




Horaire
Groupe Jour Heure Activité
01 Lundi 18:00 - 21:00 Laboratoire
Vendredi 18:00 - 21:30 Activité de cours



Coordonnées de l’enseignant
Groupe Nom Activité Courriel Local Disponibilité
01 Mamane Moustapha Dodo Amadou Activité de cours cc-Moustapha.DodoAmadou@etsmtl.ca A-3736
01 Mamane Moustapha Dodo Amadou Laboratoire cc-Moustapha.DodoAmadou@etsmtl.ca A-3736



Cours
Date Contenus traités dans les cours

6 mai 2022

 

Introduction aux systèmes asservis (chapitre 1)

  • Historique;
  • Différencier les systèmes en boucle ouverte de ceux en boucle fermée;
  • Définir les caractéristiques d’un système de commande : réponse transitoire, réponse en régime permanent, stabilité;
  • Identifier les différents composants d’un système de contrôle et leurs fonctions;
  • Utiliser la transformée de Laplace pour l’étude des systèmes transitoire et permanent;
  • Utiliser la transformée de Laplace pour résoudre les équations différentielles;
  • Différencier le régime transitoire et le régime permanent;
  • Décomposer en fractions partielles;
  • Présentation des outils de simulation : Matlab, Simulink.

13 mai 2022

et

20 mai 2022

 

Modélisation des systèmes physiques (chapitre 2)

  • Développer les fonctions de transfert pour un système de commande;
  • Décrire les modèles physiques : Systèmes électriques, mécaniques (en translation, en rotation, engrenages), thermiques, fluides, et systèmes mixtes;
  • Développer le modèle linéaire d’un système de contrôle à l’aide de ses éléments;
  • Modéliser des systèmes électriques et mécaniques de 1 à plusieurs degrés de liberté.
  • Développer le modèle d’un moteur à courant continu (CC);
  • Étudier les courbes caractéristiques du moteur C.C.;
  • Modéliser un asservissement de vitesse pour le moteur C.C.

27 mai 2022

Quiz 1 (20 minutes)

Réponse temporelle des systèmes (chapitre 4)

  • Établir la notion de fonction de transfert, pôles, zéros et réponse;
  • Réponse totale, réponse naturelle, réponse forcée;
  • Définir les caractéristiques d’un système du 1er ordre : constante de temps, temps de montée et de réponse;
  • Analyser les performances des systèmes du 1er ordre.
  • Analyser les différents types de réponse d’un système de 2ième ordre : sur amortie, sous amortie, amortie critique, non amortie;
  • Définir les caractéristiques d’un système du 2e ordre : fréquence naturelle, facteur d’amortissement, temps  de  montée, temps de réponse, pourcentage de dépassement.

 

3 juin 2022

 

Méthode de simplification des schémas blocs (chapitre 5)

  • Règles de simplification des systèmes asservis;
  • Simplification des schémas-blocs à l’aide des règles manuels et graphique;
  • Méthode algébrique (Cramer) de simplification des blocs.

10 juin 2022

EXAMEN INTRA (3h)

 

17 juin 2022

 

 

 

Étude de la stabilité des systèmes de commande (chapitre 6)

  • Déterminer la stabilité avec le critère mathématique : la position des pôles de la fonction de transfert du système de commande;
  • Évaluer la stabilité absolue avec le critère algébrique de Routh-Hurwitz;
  • Conception d’un contrôleur à l’aide du critère de Routh-Hurwitz.

30 juin 2022

 

 

 

 

Erreurs statiques des systèmes (chapitre 7)

  • Définir les différentes erreurs statiques;
  • Notions des constantes d’erreur et de type du système;
  • Conception à l’aide des constantes d’erreur;
  • Les erreurs dues aux perturbations.

8 juillet 2022

Quiz 2 (20 minutes)

 

 

Analyse en fréquence (réponse sinusoïdale) (chapitre 10)

  • Définir la réponse en fréquence d’un système de commande;
  • Représentation géométrique de la réponse en fréquence par les diagrammes de : Bode, Nyquist, Black et Nichols;
  • Tracer les lieux de Bode d’une fonction de transfert en boucle ouverte;
  • Déterminer les marges de gain et de phase avec un lieu de Bode (stabilité relative).

15 juillet 2022

 

 

 

Analyse en fréquence (stabilité relative) (chapitre 10)

  • Évaluer la fonction de transfert d’un système à partir de la réponse en fréquence expérimentale;
  • Déterminer les marges de gain et de phase avec un lieu de Bode (stabilité relative).

22 juillet 2022

 

Design des systèmes de commande – Les compensateurs (chapitre 11)

  • Modifier les performances d’un système en ajoutant une compensation en correction par avance et retard de phase;
  • Concevoir des correcteurs de phase par avance de phase;
  • Concevoir des correcteurs de phase par retard de phase.

29 juillet 2022

 

 

5 août 2022 

 

Design des systèmes de commande – Les contrôleurs de type P, Pl, PID, méthode d’ajustement de Ziegler-Nichols

  • Problème sur les compensateurs;
  • Problème du manuel de référence au chapitre 11 : 1, 2, 3, 4, 6, 8, 11 et 13;
  • Révision générale

 

 

 

Re  

 




Laboratoires et travaux pratiques

(Pour les TD, les exercices seront donnés)

Date Description de l’activité pour le groupe A

9 mai 2022

Labo – Laboratoire no 1 : Initiation à MATLAB/SIMULINK et présentation du matériel QUBE-Servo 2.

16 mai 2022

TD - Séances de travaux dirigés  : Transformées de Laplace et transformée inverse.

Problème du manuel de référence au chapitre 2 : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 et 16.

25 mai 2022

TD – Modélisation et mise en équation des systèmes, Chap 2,

Problèmes du manuel de référence au chapitre 2 : 17, 21, 22, 23, 24, 25, 26, 43, 44, 45 et 46.

30 mai 2022

Labo - Laboratoire no 2 : Étude d'un système du 1er ordre avec le matériel QUBE-Servo 2 par simulation.

6 juin 2022

TD – Problèmes systèmes du 1er ordre

Problèmes du manuel de référence au chapitre 4 : 2, 3, 4, 5, 6, 7 et 32a.

TD – Problèmes systèmes du 2e ordre

Problèmes du manuel de référence au chapitre 4 : 18 à 20, 23 à 25, 32c, 74 et 80 à 83.

20 juin 2022

Labo - Laboratoire no 3 : Conception d'un contrôleur par placement des pôles avec le matériel QUBE-Servo 2 par simulation

27 juin 2022

TD - :Stabilité et design de paramètres de stabilité (Simulink et Routh-Hurwitz).

Problèmes du manuel de référence au chapitre 6  : 1, 3, 5, 9, 12, 17, 33, 36 et 43.

4 juillet 2022

Labo - Laboratoire no 4 : Conception des contrôleurs basée sur la méthode d'ajustement de Ziegler-Nichols.

11 juillet 2022

TD - Erreurs statiques des systèmes.

Problèmes du manuel de références au chapitre 7 : 1, 10, 13, 22, 31, 33, 36 et 45.

18 juillet 2022

Labo - Laboratoire no 5 : Étude des erreurs statiques avec le matériel QUBE-Servo 2 par simulation.

25 juillet 2022

Labo - Laboratoire no 6 : Conception des contrôleurs basée sur la méthode fréquentielle avec le matériel QUBE-Servo 2 par simulation

1er août 2022

TD - Analyse et conception dans le domaine fréquentiel

 

 




Utilisation d'outils d'ingénierie
  • Logiciel MATLAB / Simulink  et la calculatrice TI



Évaluation

Activité

Description

%

Examen de mi-session

Examen portant sur la théorie vue dans les chapitres 1, 2, 4 et 5 du cours et sur la pratique vue en laboratoire/TD

23

Quiz

Deux quizs (chaque quiz vaut 4%)

8

Examen final

Examen portant sur les chapitres 6, 7, 10 et 11 du cours et sur la pratique vue en laboratoire/TD

33

Laboratoires

Six laboratoires (chaque laboratoire vaut 6%)

LA PRÉSENCE AUX LABORATOIRES EST OBLIGATOIRE

36

Remarque concernant les laboratoires :  si les laboratoires se donnent à distance, le matériel utilisé sera remplacé par son modèle mathématique.




Double seuil
Note minimale : 33



Dates des examens intra
Groupe(s) Date
1 10 juin 2022



Date de l'examen final
Votre examen final aura lieu pendant la période des examens finaux, veuillez consulter l'horaire à l'adresse suivante : http://etsmtl.ca/Etudiants-actuels/Baccalaureat/Examens-finaux


Politique de retard des travaux
Tout travail (devoir pratique, rapport de laboratoire, rapport de projet, etc.) remis en retard sans motif valable, c’est-à-dire autre que ceux mentionnés dans le Règlement des études (1er cycle, article 7.2.7 b / cycles supérieurs, article 6.5.4 b) se verra attribuer la note zéro, à moins que d’autres dispositions ne soient communiquées par écrit par l’enseignant dans les consignes de chaque travail à remettre ou dans le plan de cours pour l’ensemble des travaux.

Dispositions additionnelles

  • Pour chaque jour de retard sur la remise du rapport de laboratoire un malus de 10% sera appliquée sur la note.



Absence à un examen
Dans les cinq (5) jours ouvrables suivants, la tenue de son examen, l’étudiant devra justifier son absence d’un examen durant le trimestre auprès de la coordonnatrice – Affaires départementales qui en référera au directeur du département ou du SEG. Pour un examen final, l’étudiant devra justifier son absence auprès du Bureau du registraire. Dans tous les cas, l’étudiant doit effectuer sa demande en complétant le formulaire prévu à cet effet qui se trouve dans son portail Mon ÉTS/Formulaires. Toute absence non justifiée par un motif majeur (maladie certifiée par un billet de médecin, décès d’un parent immédiat, Activité compétitive d’un étudiant appartenant à un club scientifique ou un club sportif d’élite de l’ÉTS ou au programme « Alliance sport étude » ou autre) à un examen entraînera l’attribution de la note zéro (0).



Plagiat et fraude
Les clauses du « Règlement sur les infractions de nature académique de l’ÉTS » s’appliquent dans ce cours ainsi que dans tous les cours du département. Les étudiants doivent consulter le Règlement sur les infractions de nature académique (https://www.etsmtl.ca/docs/ETS/Gouvernance/Secretariat-general/Cadre-reglementaire/Documents/Infractions-nature-academique ) pour identifier les actes considérés comme étant des infractions de nature académique ainsi que prendre connaissance des sanctions prévues à cet effet.  À l’ÉTS, le respect de la propriété intellectuelle est une valeur essentielle et les étudiants sont invités à consulter la page Citer, pas plagier ! (https://www.etsmtl.ca/Etudiants-actuels/Baccalaureat/Citer-pas-plagier).



Documentation obligatoire

Ouvrage de référence :

 

  • NISE, N.S., (2014). Control Systems Engineering, 7e éd., John Wiley and Sons.



Ouvrages de références

Autres ouvrages :

 

  • BÉLANGER, P.R. (1994). Control Engineering, a Modern Approach, Oxford University Press.
  • SEBORG, D.E., EDGAR,  T.F.  et MELLICHAMP,D.A. (1989). Process Dynamic and Control, Wiley.
  • OGUNNAIKE, B.A. et W.H. RAY (1994). Process Dynamics, Modeling and Control, Oxford University Press.
  • BEQUETTE, B.W. (1998). Process Dynamics, Modeling, Analysis and Simulation, Prentice-Hall.
  • THOMAS, P. (1999). Simulation of Industrial Processes for Control Engineers, Butterworth Heinemann.
  • CODRON, P. et LE BALLOIS, S.  (1998). Automatique, systèmes linéaires et continus,  Dunod.
  • OGATA et KATSUHIKO (1997). Modern Control Engineering, Prentice-Hall, 3e éd.
  • KUO, B.C. (1995). Automatic Control System, Prentice-Hall, 7e éd.
  • DORF, R.C. et R.M. BISHOP (1995). Modern Control Systems, 7e éd., Addison-Wesley.
  • SAADAT, H. (1993). Computational Aids in Control Systems Using Matlab, Mc-Graw-Hill.
  • RAVEN, F.H. (1987). Automatic Control Engineering, McGraw-Hill.
  • HUGUES, T.A. (2002). Measurement and control basis, ISA Press.
  • BURNS, R.S. (2001). Advanced Control Engineering, Butterworth-Heinemann.



Adresse internet du site de cours et autres liens utiles

Site WEB :https://ena.etsmtl.ca/course/view.php




Autres informations

Ne s'applique pas.