Logo ÉTS
Session
Cours
Responsable(s) Antoine Tahan

Se connecter
 

Sauvegarde réussie
Echec de sauvegarde
Avertissement
École de technologie supérieure

Responsable(s) de cours : Antoine Tahan


PLAN DE COURS

Hiver 2022
SYS814 : Méthodologies expérimentales pour ingénieur (3 crédits)


Modalités de la session d’hiver 2022


Pour assurer la tenue de la session d’hiver 2022, les modalités suivantes seront appliquées :


Les activités d’enseignement de la session d’hiver 2022 comprendront des activités en présence et à distance, lesquelles seront ajustées en fonction de l’évolution de la situation socio-sanitaire.


Pour les cours (ou séances de cours) donnés à distance, l’étudiant ou l'étudiante doit avoir accès à un ordinateur, un micro, une caméra et un accès à internet, idéalement de 10Mb/s ou plus. Il ou elle doit ouvrir sa caméra et/ou son micro lorsque requis, notamment pour des fins d’identification ou d’évaluation.


Les cours (ou séances de cours) donnés à distance pourraient être enregistrés afin de les rendre disponibles aux personnes inscrites au cours.


La notation des cours sera la notation régulière prévue aux règlements des études de l’ÉTS.


Les examens (intra, finaux) se feront en présence, si la situation socio-sanitaire le permet.


Le contexte actuel oblige bien sûr l’ÉTS à suivre de près l’évolution de la pandémie de COVID-19, laquelle pourrait entraîner, avant ou après le début de la session d’hiver 2022, un resserrement des directives et recommandations gouvernementales. Nous vous assurons que l’ÉTS se conformera aux règles en vigueur afin de préserver la santé publique et, si requis, qu'elle pourrait aller jusqu’à interdire l’accès physique au campus universitaire et ordonner que toutes les activités d’enseignement et d’évaluation soient exclusivement données à distance pour toute ou pour une partie de la session d’hiver 2022. Ainsi, si les examens (intra, finaux) devaient se faire à distance, leur surveillance se fera à l’aide de la caméra et du micro de l’ordinateur et pourrait être enregistrée. Ceci est nécessaire pour se conformer aux exigences du Bureau canadien d’agrément des programmes de génie (BCAPG) afin d’assurer la validité des évaluations.


Des exigences additionnelles pourraient être spécifiées par l’ÉTS ou votre département, suivant les particularités propres à votre programme.


En vous inscrivant ou en demeurant inscrit à la session d'hiver 2022, vous acceptez les modalités particulières de la session d’hiver 2022.


Nous vous rappelons que vous avez jusqu’au 18 janvier 2022 pour vous désinscrire de vos cours et être remboursé.


Pour les nouveaux étudiants inscrits au programme de baccalauréat uniquement, vous avez jusqu’au 1er février 2022 pour vous désinscrire de vos cours et être remboursé.




Préalables
Aucun préalable requis




Descriptif du cours

Ce cours vise à :

  • fournir aux étudiants des outils pratiques grâce à différentes méthodes et techniques statistiques utilisées pour le traitement des données expérimentales;
  • initier les étudiants à la planification et à l’analyse expérimentale;
  • familiariser les étudiants avec les techniques statistiques d’analyse de données, la modélisation, la présentation graphique, l’interprétation et la validation des résultats expérimentaux.

Introduction à la méthodologie expérimentale. Histoire de la méthode expérimentale. Analyse du problème et expérimentation (modèles et classes) et formulation mathématique. Analyse dimensionnelle et codage des variables. Technique de représentation graphique des résultats expérimentaux. Technique de représentation graphique des résultats expérimentaux. Outils statistiques descriptifs d’analyse passive des données. Modélisation et interpolation spatiale des données. Validation des modèles. Plans d’expériences. Erreurs de mesures et la propagation des incertitudes.




Objectifs du cours

Ce cours vise à fournir aux participants quelques outils pratiques sous forme de différentes méthodes et techniques statistiques utilisées pour le traitement des données expérimentales. Ce cours est aussi une introduction à la planification et à l’analyse expérimentale. Il a pour objectif de familiariser les étudiants avec les techniques statistiques d’analyse de données, la modélisation, la présentation graphique, l’interprétation et la validation des résultats expérimentaux.




Stratégies pédagogiques

Une période de trois heures de cours magistraux par semaine incluant des travaux pratiques et des séances de laboratoires informatiques (Minitab®, R, Statgraphics). Deux (2) examens (mi-session et final) avec documentation permise.

Un projet de session portera obligatoirement sur un aspect spécifique de la matière présentée au cours. Ce projet d'envergure peut prendre la forme d'une contribution pédagogique, soit une revue exhaustive de la littérature sur un thème spécifique ou prendre la forme d'un projet synthèse qui consistera à réaliser un mini-projet axé sur le domaine de recherche de l'étudiant(e). Les exigences pédagogiques résident dans la rédaction d'un rapport technique et de la présentation orale du projet par tous les étudiants. La dernière période sera consacrée à la présentation de ces projets par les étudiants.




Horaire
Groupe Jour Heure Activité
01 Mardi 13:30 - 17:00 Activité de cours



Coordonnées de l’enseignant
Groupe Nom Activité Courriel Local Disponibilité
01 Antoine Tahan Activité de cours Antoine.Tahan@etsmtl.ca A-1904



Cours

Introduction à la méthodologie expérimentale - Rappel des notions statistiques

Histoire de la méthode expérimentale (Aristote, R. Bacon, G. Galilée, F. Bacon, R. Descartes, D. Hume, K. Popper). La thèse Duhem-Quine (Les deux dogmes de l'empirisme). Science et pseudoscience (réfutabilité par l'expérimentation ou l'échange critique comme critère de démarcation).

Répétabilité (intra) et la Reproductibilité (inter) expérimentale.

Analyse du problème et expérimentation (modèles et classes) et formulation mathématique de l’hypothèse.

Rappel des notions statistiques

Consolidation des données (transformation, filtrage, lissage, données manquantes…)

 

  • Barthélémy G. et Collectif, Histoires des sciences, Broché, 2009
  • Canguilhem G., Études d’histoire et de philosophie des sciences, Paris, Vrin, 1968
  • Cellier F., Continuous System Modeling, Springer-Verlag, Berlin, 1991
  • Johnson R. A., Miller and Freund's Probability and Statistics for Engineers, 5th Edition, Prentice Hall, 1994
  • Nicolle J.-M., Histoire des méthodes scientifiques, du théorème de Thalès au clonage, Bréal, 2006
  • Montgomery D.C. and G. C. Runger, Applied Statistics and Probability for Engineers, Wiley and Sons, 2010.
  • Quine W.V., Deux dogmes de l'empirisme, Du point de vue logique : Neuf essais logico-philosophiques, Vrin, 2004
  • Ross, S.M., Introduction to Probability and Statistics for Engineers and Scientists, Wiley and Sons, 1987
  • Vax L., L’empirisme logique de Bertrand Russell à Nelson Goodman, Paris, PUF, 1970

 

L’analyse dimensionnelle - Codage des variables

Méthode de Rayleigh / Théorème de Vaschy-Buckingham

Les nombres sans dimension, règles de similitude et changement d’échelle

Courbe maitresse / Abaques adimensionnels / Réduction de la dimensionnalité

Pré traitement des données / Tableaux de présentation des données / Recodage de variables / Regroupement

Codage des variables / Normalisation des variables

 

  • Le Clorec P., Baléo J.-N., Bourgues B., Courcoux P.et Faur-Brasquet C., Méthodologie expérimentale: Méthodes et outils pour les expérimentations scientifiques, Tec & Loc, 2003
  • Sedov L. I., Similarity and dimensional methods in mechanics, Academic Press New-York, 1959

 

Technique de représentation graphique des résultats expérimentaux

Présentations graphiques des données : Histogramme / Fréquences / Densité / Diagramme de Pareto / Graphique temporel – Séries chronologiques / Diagramme fréquence-temps / Fonction de distribution PDF / Fonction de probabilité cumulative CDF / Descripteurs / Paramètres caractéristiques de tendance centrale / Paramètres de dispersion / Paramètres de forme / Moments statistiques / Paramètres de concentration (indices de Gini).

Règles de la représentation graphique : Proportionnalité entre le graphique et les quantités numériques / Contexte et étendue de l’information présentée / Nombre de dimensions d'un graphique / Utilisation d'annotations et étiquettes / Marges d’incertitude / limites de prédiction / Couleurs et motifs.

Qualité des représentations graphiques : Densité de l’information / Élément multifonctionnel / Dimensions du graphique / Pollution visuelle / cohérence des échelles.

  • Cairo, A., The Functional Art, New Riders, 2013.
  • Tufte, E. R., Visual Explanations, Images and Quantities, Graphics press LLC, 1997
  • Tufte, E. R., Envisioning Information, Graphics press LLC, 1990
  • Yau, N., Visualize This, The Flowing Data Guide to Design, Visualization, and Statistics, Wiley, 2011
  • Sarkar, D., Lattice, Multivariate Data Visualization with R, Springer, 2008

 

Les outils statistiques descriptifs / Analyse passive des données

Les estimateurs statistiques.

Introduction à la classification automatique des données (Cluster). Distance entre données.

Les analyses d’inter corrélation et d’auto corrélation (Pearson, Kendall, Spearman).

Analyse en composantes principales : Fondements et mise en œuvre de l’ACP / Inertie et variance du nuage de points / Centrage des données / ACP simple ou canonique / ACP standard ou normée.

  • Hahn J. M., Shapiro S. S., Statistical Models in Engineering. Wiley Classics Library, 1994
  • Hair J. F., Anderson R. E., Taham R. L., Black W. C., Multivariate data analysis, Prentice Hall, 1998.
  • NIST/SEMATEK (2008) Handbook of Statistical Methods
  • Tabachnick B.G., Fidell L. S., Using Multivariate Statistics, 5th Edition, Pearson Education, 2007.

 

Modélisation et interpolation spatiale des données

Méthode généralisée des moindres carrées et méthodes non linéaire. Analyse des résidus.

Krigeage et variogramme

L’analyse ANOVA : à un facteur fixe, Intervalle de confiance sur la moyenne, Test de Newman-Keuls, L’analyse des résidus, Condition d'utilisation, Homogénéité de la variance.

Paramètres VIF / Coefficient de détermination – Coefficient de corrélation linéaire de Pearson / Coefficient de rang de Kendall / Coefficient de prédiction.

Limite de confiance et limites de prédiction / présentation graphique commune : modèle – données.

  • Box G., Draper N., Empirical Model Building and Response Surface, Wiley & Sons, 1987
  • Hahn J. M., Shapiro S. S., Statistical Models in Engineering. Wiley Classics Library, 1994
  • Hair J. F., Anderson R. E., Taham R. L., Black W. C., Multivariate Data Analysis, Prentice Hall, 1998
  • NIST/SEMATEK (2008) Handbook of Statistical Methods
  • Stein, M.L., Statistical Interpolation of Spatial Data: Some Theory for Kriging, Springer, New York, 1999

 

La validation des modèles

Les principes de la norme V&V

Méthodes de validation : Tests d’hypothèses (moyenne, variance, modèle) / Coefficients de corrélation (linéaire, de rang…) / Méthode de perturbation / Validations croisée / Métrique de surface.

Les tests statistiques (c2, Student, R², etc.) / Tests d’adéquations (Kolmogorov-Smirnov, Jarque-Bera, Shapiro-Wilk / Anderson-Darling).

  • ASME, V&V 10.x Verification & Validation, 2012
  • Liu Y., et al., Toward a Better Understanding of Model Validation Metrics, J of Mechanical Design, Vol. 133, July 2011, 071005-1, DOI: 10.1115/1.4004223
  • Kleijnen P. C. J., Validation of Models: Statistical Techniques and Data Availability, Proc of Winter Simulation Conference, 1999
  • Le Clorec P., Baléo J.-N., Bourgues B., Courcoux P. et Faur-Brasquet C., Méthodologie expérimentale: Méthodes et outils pour les expérimentations scientifiques, Tec & Loc, 2003
  • Sargent G., Verification and Validation of Simulation Models, Proceedings of the 37th conference on Winter simulation, 2005
  • Stapor K. Ksieniewicz et al., How to design the fair experimental classifier evaluation, Applied Soft Computing Journal 104 (2021) 107219

 




Laboratoires et travaux pratiques

SYS814   Groupe 1                                                     Session Hiver 2022

Cours : TBD

TP : A-1220 (15h30-17h00)

 

Semaine

Lundi

Mardi

Mercredi

Jeudi

Vendredi

Samedi

1.

03 janvier

04 janvier

05 janvier

Début des cours

06 janvier

7 janvier

8 janvier

2.

10 janvier

11 janvier

Cours 1

12 janvier

13 janvier

14 janvier

15 janvier

3.

17 janvier

18 janvier

Cours 2

19 janvier

20 janvier

21 janvier

22 janvier

4.

24 janvier

25 janvier

Cours 3

26 janvier

27 janvier

28 janvier

29 janvier

5.

31 janvier

1 février

Cours 4

2 février

3 février

4 février

5 février

6.

7 février

8 février

Cours 5

9 février

10 février

11 février

12 février

7.

14 février

15 février

Cours 6

16 février

17 février

18 février

19 février

8.

21 février

22 février

INTRA

23 février

24 février

25 février

26 février

9.

28 février

relâche

1 mars

relâche

2 mars

relâche

3 mars

relâche

4 mars

relâche

5 mars

relâche

10.

7 mars

8 mars

Cours 7

9 mars

10 mars

11 mars

12 mars

11.

14 mars

15 mars

Cours 8

16 mars

17 mars

18 mars

19 mars

12.

21 mars

22 mars

Cours 9

23 mars

24 mars

25 mars

26 mars

13.

28 mars

29 mars

Cours 10

30 mars

31 mars

1 avril

2 avril

14.

4 avril

5 avril

Cours 11

6 avril

7 avril

8 avril

9 avril

15.

11 avril

12 avril

Cours 12

 

 

Congé férié

Congé férié

 

Période d’examens finaux : du 13 au 27 avril 2021

 




Évaluation

Examen intra

 40%

Examen final

 40%

Rapport technique (projet de session)

 20%

Total

 100%

Rapports techniques en format pdf. 




Double seuil
Note minimale : 50



Dates des examens intra
Groupe(s) Date
1 22 février 2022



Date de l'examen final
Votre examen final aura lieu pendant la période des examens finaux, veuillez consulter l'horaire à l'adresse suivante : http://etsmtl.ca/Etudiants-actuels/Baccalaureat/Examens-finaux


Politique de retard des travaux
Tout travail (devoir pratique, rapport de laboratoire, rapport de projet, etc.) remis en retard sans motif valable, c’est-à-dire autre que ceux mentionnés dans le Règlement des études (1er cycle, article 7.2.7 b / cycles supérieurs, article 6.5.4 b) se verra attribuer la note zéro, à moins que d’autres dispositions ne soient communiquées par écrit par l’enseignant dans les consignes de chaque travail à remettre ou dans le plan de cours pour l’ensemble des travaux.

Dispositions additionnelles

Retard. À moins d’un avis contraire, toute remise en retard d’un travail sera pénalisée de 10 % par jour, jusqu’à concurrence de 5 jours. Au-delà de 5 jours, tout travail sera refusé.

 

Absence à un examen et à un laboratoire. Dans les cinq (5) jours ouvrables suivant la tenue de son activité d’évaluation, l’étudiant devra justifier son absence auprès de la Coordonnatrice – Affaires départementales (Génie mécanique) pour une activité d’évaluation durant la session et auprès du Directeur du Bureau des services académiques pour un examen final. Toute absence non justifiée par un motif majeur (maladie certifiée par un billet de médecin, décès d’un parent immédiat ou autre) à un examen, entraînera l’attribution de la note zéro (0).

 

 

Clause particulière. Une moyenne de 50 % ou plus dans les examens et une moyenne générale de 50 % ou plus sont nécessaires pour passer le cours.

 




Absence à un examen
Dans les cinq (5) jours ouvrables suivant la tenue de son examen, l’étudiant devra justifier son absence d’un examen durant le trimestre auprès de la coordonnatrice – Affaires départementales qui en référera au directeur de département. Pour un examen final, l’étudiant devra justifier son absence auprès du Bureau du registraire. Toute absence non justifiée par un motif majeur (maladie certifiée par un billet de médecin, décès d’un parent immédiat ou autre) à un examen entraînera l’attribution de la note (0).



Plagiat et fraude
Les clauses du « Règlement sur les infractions de nature académique de l’ÉTS » s’appliquent dans ce cours ainsi que dans tous les cours du département. Les étudiants doivent consulter le Règlement sur les infractions de nature académique (https://www.etsmtl.ca/docs/ETS/Gouvernance/Secretariat-general/Cadre-reglementaire/Documents/Infractions-nature-academique ) pour identifier les actes considérés comme étant des infractions de nature académique ainsi que prendre connaissance des sanctions prévues à cet effet.  À l’ÉTS, le respect de la propriété intellectuelle est une valeur essentielle et les étudiants sont invités à consulter la page Citer, pas plagier ! (https://www.etsmtl.ca/Etudiants-actuels/Baccalaureat/Citer-pas-plagier).



Documentation obligatoire

Voir site du cours: https://ena.etsmtl.ca/course/view.php?id=15724




Ouvrages de références

Introduction à la méthodologie expérimentale (semaine 1)

  • Barthélémy G. et Collectif, Histoires des sciences, Broché, 2009
  • Canguilhem G., Études d’histoire et de philosophie des sciences, Paris, Vrin, 1968
  • Cellier F., Continuous System Modeling, Springer-Verlag, Berlin, 1991
  • Johnson R. A., Miller and Freund's Probability and Statistics for Engineers, 5th Edition, Prentice Hall, 1994
  • Nicolle J.-M., Histoire des méthodes scientifiques, du théorème de Thalès au clonage, Bréal, 2006
  • Montgomery D.C. and G. C. Runger, Applied Statistics and Probability for Engineers, , Wiley and Sons, 2010.
  • Quine W.V., Deux dogmes de l'empirisme, Du point de vue logique : Neuf essais logico-philosophiques, Vrin, 2004
  • Ross, S.M., Introduction to Probability and Statistics for Engineers and Scientists, Wiley and Sons, 1987
  • Vax L., L’empirisme logique de Bertrand Russell à Nelson Goodman, Paris, PUF, 1970

L’analyse dimensionnelle et le codage des variables (semaine 1)

  • Le Clorec P., Baléo J.-N., Bourgues B., Courcoux P.et Faur-Brasquet C., Méthodologie expérimentale: Méthodes et outils pour les expérimentations scientifiques, Tec & Loc, 2003
  • Sedov L. I., Similarity and dimensional methods in mechanics, Academic Press New-York, 1959

Technique de représentation graphique des résultats expérimentaux (semaine 2)

  • Cairo, A., The Functional Art, New Riders, 2013.
  • Tufte, E. R., Visual Explanations, Images and Quantities, Graphics press LLC, 1997
  • Tufte, E. R., Envisioning Information, Graphics press LLC, 1990
  • Yau, N., Visualize This, The Flowing Data Guide to Design, Visualization, and Statistics, Wiley, 2011
  • Sarkar, D., Lattice, Multivariate Data Visualization with R, Springer, 2008

Les outils statistiques descriptifs / Analyse passive des données (semaine 3)

  • Hahn J. M., Shapiro S. S., Statistical Models in Engineering. Wiley Classics Library, 1994
  • Hair J. F., Anderson R. E., Taham R. L., Black W. C., Multivariate data analysis, Prentice Hall, 1998.
  • NIST/SEMATEK (2008) Handbook of Statistical Methods
  • Tabachnick B.G., Fidell L. S., Using Multivariate Statistics, 5th Edition, Pearson Education, 2007.

Modélisation et interpolation spatiale des données (semaines 4 et 5)

  • Box G., Draper N., Empirical Model Building and Response Surface, Wiley & Sons, 1987
  • Hahn J. M., Shapiro S. S., Statistical Models in Engineering. Wiley Classics Library, 1994
  • Hair J. F., Anderson R. E., Taham R. L., Black W. C., Multivariate Data Analysis, Prentice Hall, 1998
  • NIST/SEMATEK (2008) Handbook of Statistical Methods
  • Stein, M.L., Statistical Interpolation of Spatial Data: Some Theory for Kriging, Springer, New York, 1999

La validation des modèles (semaines 6 et 7)

  • ASME, V&V 10.1 Verification & Validation, 2012
  • Liu Y., et al., Toward a Better Understanding of Model Validation Metrics, J of Mechanical Design, Vol. 133, July 2011, 071005-1, DOI: 10.1115/1.4004223
  • Kleijnen P. C. J., Validation of Models: Statistical Techniques and Data Availability, Proc of Winter Simulation Conference, 1999
  • Le Clorec P., Baléo J.-N., Bourgues B., Courcoux P. et Faur-Brasquet C., Méthodologie expérimentale: Méthodes et outils pour les expérimentations scientifiques, Tec & Loc, 2003
  • Ragot J., Darouach M., Maquin D., Bloch G., Validation de données et diagnostic, Hermes, Paris, 1990
  • Sargent G., Verification and Validation of Simulation Models, Proceedings of the 37th conference on Winter simulation, 2005

Les plans d’expériences (semaines 8 et 9)

  • Box G., Draper N., Empirical Model Building and Response Surface, Wiley & Sons, 1987
  • Linder R., Les plans d'expériences. Un outil indispensable à l'expérimentateur, Les Presses de l'École Nationale des Ponts et Chaussées, 2005
  • Montgomery D. C.  Design and Analysis of Experiments, 8th Edition, Wiley, 2013

Les erreurs de mesures et la propagation des incertitudes (semaines 10 et 11)

  • ASME B89.7.3.2-2007, Technical Report, 2007
  • Ayyub B. M., Klir, G. J., Uncertainty Modeling and Analysis in Engineering and the Sciences, Chapman & Hall / Taylor & Francis Group, 2006
  • JCGM 100:2008(F), Évaluation des données de mesure — Guide pour l’expression de l’incertitude de mesure GUM, 2008.



Adresse internet du site de cours et autres liens utiles

https://ena.etsmtl.ca/course/view.php?id=15724




Autres informations

Semaine

Lundi

Mardi

Mercredi

Jeudi

Vendredi

Samedi

1.

6 janvier

7 janvier

Cours 1

8 janvier

9 janvier

10 janvier

11 janvier

2.

13 janvier

14 janvier

Cours 2

15 janvier

16 janvier

17 janvier

18 janvier

3.

20 janvier

21 janvier

Cours 3

22 janvier

23 janvier

24 janvier

25 janvier

4.

27 janvier

28 janvier

Cours 4

29 janvier

30 janvier

31 janvier

1er février

5.

3 février

4 février

Cours 5

5 février

6 février

7 février

8 février

6.

10 février

11 février

Cours 6

12 février

13 février

14 février

15 février

7.

17 février

18 février

Intra

19 février

20 février

21 février

22 février

8.

24 février

Relâche

25 février

Relâche

26 février

27 février

28 février

29 février

9.

2 mars

3 mars

Cours 7

4 mars

5 mars

6 mars

7 mars

10.

9 mars

10 mars

Cours 8

11 mars

12 mars

13 mars

14 mars

11.

16 mars

17 mars

Cours 9

18 mars

19 mars

20 mars

21 mars

12.

23 mars

24 mars

Cours 10

25 mars

26 mars

27 mars

28 mars

13.

30 mars

31 mars

Cours 11

1er avril

2 avril

3 avril

4 avril

14.

6 avril

7 avril

Fin des cours

 

 

 

 

 

Période d’examens finaux : du 8 au 22 avril 2020

 

Période de modifications d’inscription sans mention d’échec et avec remboursement : Du 6 au 19 janvier 2020.

Extension de la période pour annulation de cours seulement avec remboursement (pour les nouveaux étudiants admis au programme de baccalauréat uniquement) : du 20 janvier au 2 février 2020.

Période d’entrevue de stage, sans examen pour les cours de jour : 3 au 14 février 2020.

Fin de la session d’hiver 2020 : 22 avril 2020.

Date limite pour déposer une demande de révision de note de la session d’hiver 2020 : 19 mai 2020.