Logo ÉTS
Session
Cours
Responsable(s) Geneviève Savard, Michel Beaudin

Se connecter
 

Sauvegarde réussie
Echec de sauvegarde
Avertissement
École de technologie supérieure

Responsable(s) de cours : Geneviève Savard
Michel Beaudin


PLAN DE COURS

Automne 2024
MAT165 : Algèbre linéaire et analyse vectorielle (4 crédits)





Préalables
Programme(s) : 7483,7622,7625,7684,7694,7883,7884,7921
             
  Profils(s) : Tous profils  
             
    MAT145    
             
Unités d'agrément
Total d'unités d'agrément : 64,8 100,0 %




Qualités de l'ingénieur

Qn
Qualité visée dans ce cours  
Qn
  Qualité visée dans un autre cours  
  Indicateur enseigné
  Indicateur évalué
  Indicateur enseigné et évalué



Descriptif du cours
Au terme de ce cours, l’étudiante ou l’étudiant comprendra et maîtrisera les notions fondamentales d'algèbre matricielle et d'analyse vectorielle.

Vecteurs, algèbre et géométrie vectorielle, produits scalaires, vectoriels et mixtes, fonctions vectorielles à une variable et applications. Transformations linéaires, matrices, déterminants, inversion de matrices, systèmes d'équations linéaires, valeurs propres et vecteurs propres. Fonctions à plusieurs variables, dérivées partielles, dérivées directionnelles, gradient; applications géométriques : courbes de niveaux, optimisation, plans tangents. Intégrales doubles et triples; applications : calcul de surfaces, volumes, centres de gravité, moments d'inertie. Champ vectoriel, divergence et rotationnel, intégrales de lignes et de surfaces; théorèmes de Green, Stokes et de la divergence.

Séances de travaux pratiques composées d'exercices choisis pour illustrer et compléter la théorie vue en classe.



Objectifs du cours

Se doter de puissantes lunettes 3D pour partir à l’exploration de l’espace : points, vecteurs, trajectoires, droites, plans, surfaces, courbes de niveau et plus encore!

Voir les notions de base de géométrie vectorielle, de calcul différentiel et intégral à plusieurs variables et de calcul vectoriel. Utiliser ces outils afin de résoudre divers problèmes.

Apprendre à résoudre des systèmes d’équations linéaires en utilisant différentes techniques matricielles, puis à donner une interprétation géométrique de l'ensemble solution lorsque le nombre de variables est 2 ou 3.




Stratégies pédagogiques

Trois heures de cours magistral par semaine. Théorie accompagnée d’exemples ou d’exercices.

Trois heures de travail pratique par semaine. Sous la supervision de l’enseignante, de l'enseignant ou de la personne responsable des travaux pratiques, ces périodes permettront de faire des exercices ou de compléter les notions vues au cours.




Utilisation d’appareils électroniques

Consultez votre enseignante ou votre enseignant.




Horaire
Groupe Jour Heure Activité
01 Mardi 09:00 - 12:30 Activité de cours
Jeudi 09:00 - 12:00 Travaux pratiques
02 Lundi 09:00 - 12:30 Activité de cours
Jeudi 13:30 - 16:30 Travaux pratiques
03 Mardi 09:00 - 12:00 Travaux pratiques
Jeudi 09:00 - 12:30 Activité de cours
04 Lundi 18:00 - 21:30 Activité de cours
Jeudi 18:00 - 21:00 Travaux pratiques



Coordonnées du personnel enseignant le cours
Groupe Nom Activité Courriel Local Disponibilité
01 Geneviève Savard Activité de cours Genevieve.Savard@etsmtl.ca B-2554
01 Geneviève Savard Travaux pratiques Genevieve.Savard@etsmtl.ca B-2554
02 Geneviève Savard Activité de cours Genevieve.Savard@etsmtl.ca B-2554
02 Geneviève Savard Travaux pratiques Genevieve.Savard@etsmtl.ca B-2554
03 Roberto Persechino Activité de cours Roberto.Persechino@etsmtl.ca B-2538
03 Roberto Persechino Travaux pratiques Roberto.Persechino@etsmtl.ca B-2538
04 Alain Régnier Activité de cours Alain.Regnier@etsmtl.ca B-2108
04 François Côté Travaux pratiques Francois.Cote@etsmtl.ca



Cours

COURS

MATIÈRE

RÉFÉRENCE

1 à 3

Vecteurs et géométrie

Vecteurs dans le plan et dans l’espace. Opérations sur les vecteurs (somme, multiplication par un scalaire, produit scalaire, produit vectoriel et produit mixte). Éléments de géométrie dans l’espace : droites, plans et surfaces (cylindriques et quadriques).

Algèbre matricielle

Définitions et opérations sur les matrices. Inversion de matrices, déterminants. Solutions de systèmes d’équations linéaires : algorithme de Gauss-Jordan. Applications diverses.

Chapitre 9

 

 

et

 

Notes de cours "Éléments d'algèbre matricielle"

4

 

Fonctions vectorielles

Fonctions vectorielles. Courbes dans le plan et dans l’espace. Dérivées et intégrales. Droites tangentes. Longueur d’arc. Courbes et surfaces paramétrées.

Chapitre 10

5 et 6

Champs scalaires

Fonctions de plusieurs variables. Dérivées partielles. Plans tangents et approximations linéaires. Dérivation des fonctions composées. Dérivées dans une direction et vecteur gradient.

Chapitre 11

Sections 11.1, 11.3 à 11.6

7

Examen intra

 

8 et 9 

Optimisation

Extremums locaux et absolus, test des dérivées secondes, théorème des valeurs extrêmes pour les fonctions de deux variables, méthode des multiplicateurs de Lagrange.

 

Sections 11.7 et 11.8

 

10 à 12

Intégrales multiples

Intégrales doubles en coordonnées cartésiennes et en coordonnées polaires. Intégrales triples en coordonnées cartésiennes, cylindriques et sphériques. Applications : calculs d’aire, de volume, de masse, de centre de masse.

Chapitre 12

12 et 13

Analyse vectorielle

Champ vectoriel. Intégrales curvilignes d'un champ vectoriel (travail d'un champ de force).  Champ conservatif et fonction potentiel. Théorème fondamental des intégrales curvilignes. Théorème de Green.

Chapitre 13

Sections 13.1 à 13.4

 

 

Examen final 

Total : 39 heures




Laboratoires et travaux pratiques

Trois heures de travail pratique par semaine. Sous la supervision de l’enseignante, de l'enseignant ou de la personne responsable des travaux pratiques, ces périodes permettront de faire des exercices ou de compléter les notions vues au cours. 




Utilisation d'outils d'ingénierie

La calculatrice symbolique sera utilisée de façon continue, tout au long de la session pour illustrer des concepts mathématiques, pour effectuer des calculs algébriques, pour résoudre numériquement des problèmes appliqués où la solution ne peut être obtenue algébriquement et pour visualiser graphiquement des solutions à des problèmes concrets en mathématiques et sciences du génie. L’utilisation efficace de cet outil sera vérifiée lors des examens. Pour de l’aide sur l’utilisation de cette calculatrice symbolique, visitez le site:

http://seg-apps.etsmtl.ca/nspire/

Les objectifs spécifiques d’apprentissage concernant l’utilisation de la calculatrice TI-Nspire CAS CX sont :

  1. Tracer des graphiques 2D (en mode Fonction, Relation, Paramétrique ou Polaire).
  2. Savoir définir une fonction vectorielle, la dériver, l’intégrer et en tracer la courbe correspondante (en mode Paramétrique 2D ou 3D).
  3. Savoir définir une fonction de plusieurs variables, la dériver, l’intégrer et, dans le cas d’une fonction de 2 variables, en tracer le graphique 3D   z = f(x, y).  Savoir tracer une surface paramétrée.
  4. Savoir utiliser les différentes commandes relatives aux vecteurs : addition, soustraction, produit d'un vecteur par un scalaire, produit scalaire, produit vectoriel, norme d’un vecteur.
  5. Savoir créer des fonctions ou des procédures permettant d’automatiser certains calculs.
  6. Savoir utiliser la calculatrice pour effectuer différentes opérations matricielles.



Évaluation
Mode d'évaluation Pondération Date

Évaluation intra (3h)

35 %

Voir le tableau ci-dessous.

Examen final (3h)

35 % Pendant la période des examens finaux.

Devoirs et/ou mini-tests

30 %

Les dates seront communiquées en classe.

 

Examen intra

L'examen intra est d'une durée totale de 3 heures. Il comporte deux parties: une première sans la calculatrice et une deuxième où l'usage de la calculatrice est permis.

Examen final

L’examen final, d’une durée totale de 3 heures, porte sur le contenu des cours 8 à 13, tel que décrit à la section "Cours", et il a lieu pendant la période des examens finaux. L'examen final est commun à tous les groupes de MAT165 et il comporte deux parties : une première sans la calculatrice et une seconde où l'usage de la calculatrice est permis.

Matériel permis pour l’examen final

  • Un résumé personnel de 3 feuilles 8½ ×11, recto verso, manuscrit ou tapé à l’ordinateur.
  • La table de dérivées, la table d’intégrales et l'aide-mémoire d'algèbre et de trigonométrie (voir la section «Documents» du site du cours pour des copies).
  • Une calculatrice TI-Nspire pour la 2e partie de l'examen seulement.



Double seuil
Note minimale : 50



Dates des examens intra
Groupe(s) Date
1 22 octobre 2024
2, 4 21 octobre 2024
3 24 octobre 2024



Date de l'examen final
Votre examen final aura lieu pendant la période des examens finaux, veuillez consulter l'horaire à l'adresse suivante : https://www.etsmtl.ca/programmes-et-formations/horaire-des-examens-finaux


Politique de retard des travaux
Tout travail (devoir pratique, rapport de laboratoire, rapport de projet, etc.) remis en retard sans motif valable, c’est-à-dire autre que ceux mentionnés dans le Règlement des études (1er cycle, article 7.2.5/ cycles supérieurs, article 6.5.2) se verra attribuer la note zéro, à moins que d’autres dispositions ne soient communiquées par écrit par l’enseignante ou l’enseignant dans les consignes de chaque travail à remettre ou dans le plan de cours pour l’ensemble des travaux.



Absence à une évaluation

Afin de faire valider une absence à une évaluation en vue d’obtenir un examen de compensation, l’étudiante ou l’étudiant doit utiliser le formulaire prévu à cet effet dans son portail MonÉTS pour un examen final qui se déroule durant la période des examens finaux ou pour tout autre élément d’évaluation surveillé de 15% et plus durant la session. Si l’absence concerne un élément d’évaluation de moins de 15% durant la session, l’étudiant ou l’étudiante doit soumettre une demande par écrit à son enseignante ou enseignant.

Toute demande de validation d’absence doit se faire dans les cinq (5) jours ouvrables suivant la tenue de l’évaluation, sauf dans les cas d’une absence pour participation à une activité prévue aux règlements des études où la demande doit être soumise dans les cinq (5) jours ouvrables avant le jour de départ de l’ÉTS pour se rendre à l’activité.

Toute absence non justifiée par un motif majeur (voir articles 7.2.6.1 du RÉPC et 6.5.2 du RÉCS) entraînera l’attribution de la note zéro (0).




Infractions de nature académique
Les clauses du « Règlement sur les infractions de nature académique de l’ÉTS » s’appliquent dans ce cours ainsi que dans tous les cours du département. Les étudiantes et les étudiants doivent consulter le Règlement sur les infractions de nature académique (www.etsmtl.ca/a-propos/gouvernance/secretariat-general/cadre-reglementaire/reglement-sur-les-infractions-de-nature-academique) pour identifier les actes considérés comme étant des infractions de nature académique ainsi que prendre connaissance des sanctions prévues à cet effet. À l’ÉTS, le respect de la propriété intellectuelle est une valeur essentielle et tous les membres de la communauté étudiante sont invités à consulter la page Citer, pas plagier ! (www.etsmtl.ca/Etudiants-actuels/Baccalaureat/Citer-pas-plagier).

Systèmes d’intelligence artificielle générative (SIAG)
L’utilisation des systèmes d’intelligence artificielle générative (SIAG) dans les activités d’évaluation constitue une infraction de nature académique au sens du Règlement sur les infractions de nature académique, sauf si elle est explicitement autorisée par l’enseignante ou l’enseignant du cours.



Documentation obligatoire
  • STEWART, J. Analyse : concepts et contextes, Fonctions de plusieurs variables, 3e  édition (2011), De Boeck.  432 pages. (En vente à la  librairie Coopsco de l'ÉTS).
  • PINEAU, K. et R. MICHAUD. Notes de cours, Éléments d’algèbre matricielle, Édition révisée en mars 2023. (Disponible en format PDF sur le site Moodle du cours.)



Ouvrages de références
  • LOPEZ, R. J. Advanced Engineering Mathematics, Addison-Wesley, 2001.
  • MC CULLUM, W. G. et al. Fonctions de plusieurs variables, Chenelière McGraw-Hill, 1999.



Adresse internet du site de cours et autres liens utiles



Autres informations

Les séances de cours et de travaux pratiques des cours-groupes dont le mode d'enseignement est hybride sont offertes entièrement à distance. L'étudiante ou l'étudiant inscrit à un tel cours-groupe n'a donc pas besoin de se déplacer à l'École durant la session, sauf lors des évaluations en présence identifiées à la section "Évaluation".